Feature-based 3D morphing based on geometrically constrained spherical parameterization

نویسندگان

  • Theodoris Athanasiadis
  • Ioannis Fudos
  • Christophoros Nikou
  • Vasiliki Stamati
چکیده

Current trends in free form editing motivate the development of a novel editing paradigm for CAD models beyond traditional CAD editing of mechanical parts. To this end, we need robust and efficient 3D mesh deformation techniques such as 3D structural morphing. In this paper, we present a feature-based approach to 3D morphing of arbitrary genus-0 polyhedral objects that is appropriate for CAD editing. The technique is based on a sphere parameterization process built on an optimization technique that uses a target function to maintain the correspondence between the initial polygons and the mapped ones, while preserving topology and connectivity through a system of geometric constraints. Finally, we introduce a fully automated feature-based technique that matches surface areas (feature regions) with similar morphological characteristics between the two morphed objects and performs morphing according to this feature correspondence list. Alignment is obtained without user intervention based on pattern matching between the feature graphs of the two morphed objects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Meshing Point Clouds Using Spherical Parameterization

We present a simple method for meshing a 3D point cloud to a manifold genus-0 mesh. Our approach is based on recent methods for spherical embedding of planar graphs, where we use instead a k-nearest neighborhood graph of the point cloud. Our approach proceeds in two steps: We first embed the neighborhood graph on a sphere using an iterative procedure, minimizing the tangential Laplacian. Then w...

متن کامل

3D Triangular Mesh Parameterization with Semantic Features Based on Competitive Learning Methods

In 3D computer graphics, mesh parameterization is a key technique for digital geometry processings such as morphing, shape blending, texture mapping, re-meshing and so on. Most of the previous approaches made use of an identical primitive domain to parameterize a mesh model. In recent works of mesh parameterization, more flexible and attractive methods that can create direct mappings between tw...

متن کامل

A New Constrained Texture Mapping Method

The validity of texture mapping is an important issue for point or mesh based surfaces. This paper provides a new constrained texture mapping method which is capable of ensuring the validity of texture mapping. The method employs the “divided-and-ruled” strategy to construct a direct correspondence between the respective patches of the texture image and 3D mesh model with feature matching. The ...

متن کامل

Parallel computation of spherical parameterizations for mesh analysis

Mesh parameterization is central to a broad spectrum of applications. In this paper, we present a novel approach to spherical mesh parameterization based on an iterative quadratic solver that is efficiently parallelizable on modern massively parallel architectures. We present an extensive analysis of performance results on both GPU and multicore architectures. We introduce a number of heuristic...

متن کامل

Material Space Texturing

Many objects have patterns that vary in appearance at different surface locations. We say that these are differences in materials, and we present a material-space approach for interactively designing such textures. At the heart of our approach is a new method to pre-calculate and use a 3D texture tile that is periodic in the spatial dimensions (s, t) and that also has a material axis along whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Aided Geometric Design

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2012